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Optimal flow control for Navier–Stokes equations:
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SUMMARY

Optimal control and shape optimization techniques have an increasing role in Fluid Dynamics problems
governed by partial differential equations (PDEs). In this paper, we consider the problem of drag minimiza-
tion for a body in relative motion in a fluid by controlling the velocity through the body boundary. With
this aim, we handle with an optimal control approach applied to the steady incompressible Navier–Stokes
equations. We use the Lagrangian functional approach and we consider the Lagrangian multiplier method
for the treatment of the Dirichlet boundary conditions, which include the control function itself. Moreover,
we express the drag coefficient, which is the functional to be minimized, through the variational form
of the Navier–Stokes equations. In this way, we can derive, in a straightforward manner, the adjoint and
sensitivity equations associated with the optimal control problem, even in the presence of Dirichlet control
functions. The problem is solved numerically by an iterative optimization procedure applied to state and
adjoint PDEs which we approximate by the finite element method. Copyright q 2007 John Wiley & Sons,
Ltd.

Received 27 June 2006; Revised 22 January 2007; Accepted 22 January 2007

KEY WORDS: optimal control problems; Navier–Stokes equations; drag minimization; Dirichlet boundary
control; Lagrangian multiplier method; finite element approximation

1. INTRODUCTION

A popular problem in Fluid Dynamics consists in minimizing the drag coefficient of a body in
relative motion with a fluid [1–9]; in particular, one case commonly studied is that of the steady
incompressible Navier–Stokes equations with constant density and viscosity. Some applications
are, e.g. the design of airfoils in Aerodynamics [8] (at high Reynolds numbers) and the study of the
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geometry of blunt bodies in flows at low Reynolds numbers (see, e.g. [10]). The drag minimization
problem can be recast in the theory of optimal control for partial differential equations (PDEs)
[11, 12], or as a problem of shape optimization [4, 9]. In this paper, we are interested in minimizing
the drag coefficient of a blunt body by acting on the velocity at the boundaries of the body itself;
this corresponds to regulate the aspiration or the blowing of the boundary layer in order to reduce
the effects of the vortices coming off from the rear of the body. This problem can be formulated
as an optimal control problem, for which the control function is the Dirichlet boundary condition
[2, 3, 5–7, 13–15]. With this aim, we use the Lagrangian functional approach [1, 5, 16–18] instead
of calculating directly the gradient of the functional subject to minimization [2, 3, 5, 7, 14]. In this
context, the main difficulty consists in the treatment of the Dirichlet boundary control function,
which does not match with the variational setting provided by the Lagrangian functional approach,
unless suitable lifting terms are introduced.

Different approaches have been considered in the literature to overcome this difficulty in the
field of Navier–Stokes equations. In [13], the Nitsche method [19] is proposed in order to suppress
the recirculation in a backward facing step in a channel by regulating the inflow velocity field.
In [15, 20], both linear and non-linear penalized Neumann control approaches for the solution of
optimal control problems with the Dirichlet control functions are considered. Moreover, in [15], a
Lagrangian multiplier method [21] is proposed for the treatment of the Dirichlet control function
(this strategy is also considered in [22] for optimal control problems governed by elliptic PDEs).
The approaches presented in [15, 20] are applied for the minimization of the vorticity and the
‘distance’ between the velocity field and a desired one; sequential quadratic programming (SQP)
methods (see, e.g. [23]) have been used for the solution of these optimal control problems.

In this paper, we use, for our drag minimization problem, the Lagrangian multiplier method for
the treatment of the Dirichlet velocity control function on the body, in analogy with the approaches
outlined in [15, 22] (for elliptic PDEs). However, for the evaluation of the drag, or more in general
the force acting on the body, we exploit the variational form of the Navier–Stokes equations [24],
instead of using the definition, the latter being directly related to the integral of the stress acting
on the body boundaries. The two approaches, that are equivalent at the ‘continuous level’, are in
fact different at the ‘discrete level’. The one that we follow in this paper yields more accurate
computation of the drag coefficient [24] and, in the context of optimization, reduces the propagation
of the discretization errors in the course of the iterative optimization procedure. Moreover, this
approach allows us to identify the Lagrangian multiplier as the inward directed normal stress,
to express the drag coefficient in terms of this multiplier and, consequently, to obtain a simple
expression for the adjoint equations.

For the numerical solution of the optimal control problem, we use the steepest-descent method
[11], while the PDE system is discretized by means of the finite element (FE) method. Finally,
we report some numerical results concerning with the minimization of the drag for blunt bodies
(at low Reynolds numbers), which prove the effectiveness of the outlined procedures.

An outline of this work is as follows. In Section 2, we recall the Lagrangian functional approach
for optimal control problems in an abstract setting. Then, we consider the drag coefficient mini-
mization problem for the incompressible Navier–Stokes equations, introducing the evaluation of
the drag coefficient by means of the variational form. Finally, we write the Lagrangian functional,
using the Lagrangian multiplier method for the treatment of the Dirichlet boundary conditions, and
we formulate the adjoint Navier–Stokes equations and the sensitivity equation. In Section 3, we
discuss the aspects related to the numerical resolution of the optimal control problem: in particular,
we recall the steepest-descent method and the techniques considered for the numerical solution of
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the Stokes and Navier–Stokes equations. Finally, in Section 4, we present some numerical results
and compare them for different values of the Reynolds number.

2. MATHEMATICAL MODEL: THE OPTIMAL CONTROL PROBLEM

In this section, we consider the optimal control problem in an abstract setting; then, we treat a
flow control problem governed by the Navier–Stokes equations for the minimization of the drag
acting on a solid object.

2.1. The general setting for optimal control

Let us start with an abstract control problem, which, for the sake of simplicity, we consider
depending on scalar variables; however, this formalism can be extended in straightforward manner
to vectorial problems, like the Navier–Stokes equations which we will consider in Section 2.3.

The optimal control problem reads:

find u ∈U, u = argmin J (v, u) with A(v) = f + B(u) and v ∈V (1)

where J (v, u) is the cost functional, A a differential operator on V with values in V′, B a
differential operator on U into V′, f a source term, V and U two Hilbert spaces. The equation
A(v) = f +B(u), which incorporates appropriate boundary conditions, is called the state equation,
v the state variable and u the control variable. Let us note that, in general, A(·) and B(·) are non-
linear differential operators in v and u, respectively.

For the analysis of the optimal control problem (1), we use the Lagrangian functional framework
[1, 16–18]. This approach sets the control problem as a constrained minimization problem, for
which a Lagrangian functional is defined; the minimum, if it exists, is a stationary ‘point’ of the
Lagrangian functional. Conversely, the classical approach developed by Lions [12] allows a full
analysis of the problem, providing existence and uniqueness results; incidentally, this technique
is not always straightforward as the Lagrangian functional one, which, however, does not always
provide a suitable analysis of the optimal control problem.

We define the Lagrangian functional as [16]
L(v, z, u):=J (v, u) +V 〈z, f + B(u) − A(v)〉V′ (2)

where z ∈V is the Lagrangian multiplier. The optimum of the control problem x∗:=(v∗, z∗, u∗) ∈X
(X:=V × V × U), if it exists, is a stationary point of the Lagrangian functional L(x), with
x:=(v, z, u) ∈X, i.e.

∇L(x∗)[y]= 0, y∈X (3)

where differentiation is in Fréchet sense [25]. System (3) is regarded as the Euler–Lagrange system,
for which we have the following three equations:

L,v (v, z, u)[ϑ] = 0 adjoint equation

L,z (v, z, u)[�] = 0 state equation

L,u (v, z, u)[�] = 0 ‘sensitivity’equation

(4)
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where we have supposed y= (ϑ, �, �). The first equation of system (4) is regarded as the adjoint
equation, for which z ∈V is defined as the adjoint variable. The third equation is related to the
sensitivity of the Lagrangian functional L(v, z, u) w.r.t. the control variable u ∈U.

Let us apply the general expression for the Lagrangian functional (3) to the abstract control
problem stated in Equation (1); to this aim, we consider the weak form of the state equation, given
in Equation (1) in distributional sense, which reads

find v ∈V : a(v)(�) = ( f,�) + b(u)(�) ∀�∈V (5)

where a(·)(·) and b(·)(·) are the semi-linear forms (linear in the second argument) associated,
respectively, to the operators A(·) and B(·). The Lagrangian functional (2) reads

L(v, z, u) = J (v, u) + ( f, z) + b(u)(z) − a(v)(z) (6)

By differentiating L(v, p, u) w.r.t. v ∈V, we obtain the adjoint equation in weak form:

find z ∈V : a′(v)(z,ϑ) = J,v (v, u)(ϑ) ∀ϑ ∈V (7)

where, for the sake of simplicity, we indicate a,v (v)(z, ϑ) as a′(v)(z, ϑ); let us note that the adjoint
equation is linear in z ∈V even if the state equation is non-linear in the state variable. Similarly,
by differentiating w.r.t. u ∈U the third equation of the Euler–Lagrange system (4), we obtain

J,u (v, u)(�) + b′(u)(z,�) = 0, � ∈U (8)

where we indicate b,u (u)(z,�) with b′(u)(z, �). From the previous equation, it is possible to
extract the sensitivity function �u ∈U, which we will define in Section 2.3 for the problem under
investigation.

2.2. Drag minimization for Navier–Stokes equations

We consider a body embedded in a 2-D flow governed by the steady incompressible Navier–Stokes
equations for a Newtonian fluid with constant density and viscosity.

The goal consists in minimizing the drag coefficient by regulating the flow u across the boundary
�CTRL of the body in relative steady motion with the fluid; see Figure 1. By defining v as the
velocity field, p as the pressure, � as dynamic viscosity coefficient, � as the density, the Navier–
Stokes system reads [19, 26]

−∇ · T(v, p) + �(v · ∇)v= 0 in �

∇ · v= 0 in �

v= v∞ on �IN

v · n̂= 0, (T(v, p)n̂) · t̂= 0 on �SYM

T(v, p)n̂= 0 on �OUT

v= 0 on �NS

v=u on �CTRL

(9)
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Figure 1. Domain for the control problem and boundary conditions.

where n̂ and t̂ are, respectively, the outward directed normal and tangential unit vectors on the
boundary �i ; the stress tensor T(v, p) reads

T(v, p) = �(∇v + ∇Tv) − pI (10)

I being the identity tensor. We impose inflow boundary conditions on �IN, symmetry conditions
on �SYM, no stress conditions on �OUT, no slip conditions on �NS and Dirichlet conditions (u is
the control variable) on the control boundary �CTRL, which corresponds to imposing the velocity
on �CTRL. Let us note that

⋃
i �i = �� and �i ∩ � j =∅, ∀i, j .

The functional to minimize is the adimensional drag coefficient cD(v, p), for which the problem
that we consider is

find u= argmin cD(v, p) with cD(v, p):= − 1

q∞d

∮
�BODY

(T(v, p)n̂) · v̂∞ d� (11)

and (v, p) depends on u through the state equations (9). The minus sign takes into account that,
by convention, the force is positive if acting on the fluid. In Equation (11) �BODY:=�NS ∪�CTRL,
q∞:= 1

2�V
2∞, with v∞ = V∞v̂∞, v̂∞ is the unit vector directed as the incoming flow, V∞ is taken

constant and d is the characteristic dimension of the body. Let us note that the drag q∞dcD has
the dimension of a force per unit length.

We consider a parabolic profile for the control flow, written in the form

u=Ug(x) with g(x):= − 4
(x − x1CTRL)(x2CTRL − x)

(x2CTRL − x1CTRL)2
n̂CTRL (12)

where x1CTRL and x2CTRL are the abscissae of the endpoints of the boundary �CTRL, while n̂CTRL
is the outward directed unit vector normal to �CTRL. Let us note that the versus of the unit vector
n̂CTRL is from the fluid towards the body, which is external to the computational domain; moreover,
on �CTRL, we have g(x) · n̂CTRL�0. The effective control variable is the parameter U ∈ R, which
is the maximum value (in modulus) of the parabolic flow of Equation (12). Let us observe that
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352 L. DEDÈ

a positive value of U corresponds to a blowing of the fluid across the body walls �CTRL; on the
contrary, if U is negative, the fluid is aspirated (i.e. the flow is directed from the fluid towards the
body).

Weak formulation: For the analysis of the optimal control problem we introduce, similar to what
was done in Section 2.1 for the general case, the weak form of the Navier–Stokes equations. This
can be done by introducing suitable functional spaces for v and p [19, 26], which account properly
for Dirichlet boundary conditions; an alternative approach consists in introducing the boundary
conditions by means of a Lagrange multiplier approach [15, 21, 22]. This last approach, which we
will follow, allows a straightforward treatment of the boundary conditions in the analysis of the
optimal control problem, without introducing lifting terms.

Let us introduce the following forms:

a(v,U):=
∫

�
�(∇v + ∇Tv) · ∇U d� (13)

b(p,U):= −
∫

�
p∇ ·U d� (14)

c(v, v,U):=
∫

�
�(v · ∇)v ·U d� (15)

The Navier–Stokes equations in weak form, with boundary conditions introduced through a
Lagrange multiplier, read

find v∈[H1(�)]2, p∈L2(�), w∈[H−1/2(�DS)]2 :

a(v,U) + b(p,U) + c(v, v,U) +
∫

�D

w ·U d� +
∫

�SYM

w · n̂U · n̂ d�= 0

b(�, v) = 0 (16)∫
�D

(v − vD) · K d� +
∫

�SYM

v · n̂K · n̂ d�= 0

∀U∈[H1(�)]2 ∀�∈L2(�) ∀K∈[H−1/2(�DS)]2
where �D:=�IN ∪ �NS ∪ �CTRL, �DS:=�D ∪ �SYM, [H1(�)]2 and [H−1/2(�DS)]2 are the
usual Sobolev spaces, while vD, which we consider in the Sobolev space [H1/2(�D)]2, reads
(Equation (9))

vD:=

⎧⎪⎪⎨
⎪⎪⎩

v∞ on �IN

0 on �NS

u on �CTRL

(17)

In particular, the control variable u∈[H1/2(�CTRL)]2. The Lagrange multiplier w∈[H−1/2(�DS)]2
is introduced to allow the variable v∈[H1(�)]2 to fit the Dirichlet boundary conditions, which
includes the control variable u. Let us observe that we suppose n̂ (i.e. �SYM) to be ‘sufficiently
regular’ so that in Equation (16) w∈[H−1/2(�SYM)]2 implies w · n̂∈H−1/2(�SYM), v∈[H1/2

(�SYM)]2 implies v · n̂∈H1/2(�SYM), and so on. This is the case of the problem under investigation
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(see Figure 1), for which �SYM is composed by two distinct segments. Moreover, the boundary
integrals of Equation (16) can be seen as duality pairs: H−1/2(�i )

〈·, ·〉H1/2(�i )
or H1/2(�i )

〈·, ·〉H−1/2(�i )
.

Finally, in view of the finite element approximation, problem (16) will be reformulated in weak
form [19]; the solution ṽ is sought for in [H1

|�DS
(�)]2, the test function U∈[H1

|�DS
(�)]2, where

[H1
|�DS

(�)]2:={s∈[H1(�)]2 : s|�D = 0 and (s · n̂)|�SYM = 0}, by modifying the source term in order
to account for the non-homogeneous Dirichlet data. Thereby the direct evaluation of the variable
w∈[H−1/2(�DS)]2 is not necessary.

Drag evaluation: The drag coefficient cD, defined in Equation (11), can be evaluated once
the Navier–Stokes equations are resolved and the velocity field v and the pressure p are known.
However, the computation of cD by means of the definition (11) can lead to inaccurate results even
if the computational grid is quite fine, as we better specify later. Better results can be achieved by
using an alternative expression for cD, which we indicate with c̃D, dependent on the variational
forms used for the Navier–Stokes equations, as reported in [7, 17, 24].

In order to provide the expression of c̃D, we express cD (11) in the following form

cD(v, p) = 1

q∞d

∮
��

(T(v, p)n̂) ·U∞ d� (18)

where

U∞∈[H1(�)]2 with U∞|�BODY = − v̂∞, U∞|��\�BODY
= 0 (19)

By means of the Gauss theorem and Green’s identity [24, 26], Equation (18) becomes

cD(v, p) = 1

q∞d

∫
�

∇ · (T(v, p)TU∞) d�

= 1

q∞d

∫
�
(∇ · T(v, p) ·U∞ + T(v, p) · ∇U∞) d� (20)

Owing to the first equation of the system (9) and Equation (15), we have∫
�

∇ · T(v, p) ·U∞ d�=
∫

�
�(v · ∇)v ·U∞ d�= c(v, v,U∞) (21)

while, from Equations (10), (13) and (14), we obtain
∫

�
T(v, p) · ∇U∞ d� =

∫
�

�(∇v + ∇Tv) · ∇U∞ d� −
∫

�
p∇ ·U∞ d�

= a(v,U∞) + b(p,U∞) (22)

for which, being b(�, v) = 0, ∀�∈L2(�), c̃D reads

c̃D(v, p) = 1

q∞d
A(v, p,U∞, �) ∀�∈L2(�) (23)

where

A(v, p,U,�):=a(v,U) + b(p,U) + b(�, v) + c(v, v,U) (24)
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The form for the drag coefficient provided in Equation (23) allows accurate computations and will
be used in this work. Let us note that cD and c̃D are equivalent at the continuous level, however, the
representations (20) and (23) lead to different approximations at the discrete level. For instance,
by using the FE method with continuous, piecewise polynomials of degree k for v and k − 1 for
p (Taylor–Hood elements, see [19, 27, 28]), the order of convergence of c̃Dh to the exact value cD
is 2k, while for cDh is only k [24], being cDh and c̃Dh the computed quantities corresponding to
cD and c̃D. This fact has great importance in the optimization context, where the adjoint variables
depend on the sensitivity of the cost functional (in this case cD) with respect to the state variables.
The choice of the representation, as verified by numerical tests, not only influences the computation
of the adjoint variables, but it also affects the accuracy of the result obtained by the optimization
procedure.

Let us observe that, according to Equation (16), the variational form A(v, p,U, �) can be
expressed as

A(v, p,U,�) = −
∫

�D

w ·U d� −
∫

�SYM

w · n̂U · n̂ d� (25)

for which, upon the definition of U∞ given in Equation (19), the drag coefficient c̃D admits the
alternative expression:

ĉD(w) = 1

q∞d

∫
�BODY

w · v̂∞ d� (26)

Let us note that Equation (26) allows us to identify the Lagrange multiplier w∈[H−1/2(�DS)]2 as
the inward normal stress, more precisely

w= − T(v, p)n̂ on �DS (27)

This last result allows us to derive in a straightforward manner the adjoint equations associated to
the control problem, as we will show in the following section.

2.3. The optimal control system for the Navier–Stokes equations

We apply the optimal control analysis based on the Lagrangian functional given in Section 2.1 to
the drag minimization problem defined in Equation (11).

According to Equations (16), (24) and (26), the associated Lagrangian functional is defined as

L(v, p,w, z, q, r,u) := ĉD(w) − A(v, p, z, q)

−
∫

�D

w · z d� −
∫

�SYM

w · n̂z · n̂ d�

−
∫

�D\�CTRL

(v − vD) · r d� −
∫

�CTRL

(v − u) · r d�

−
∫

�SYM

v · n̂r · n̂ d� (28)
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By differentiatingL(·) with respect to (z, q, r), we obtain the state equation in weak form reported
in Equation (16). Similarly, by differentiating L(·) with respect to the state variables (v, p,w),
we obtain the adjoint equations. Their weak form reads

find z∈[H1(�)]2, q∈L2(�), r∈[H−1/2(�DS)]2 :

a(H, z) + b(q,H) + c′(v,H, z) +
∫

�D

H · r d� +
∫

�SYM

H · n̂r · n̂ d�= 0

b(ϑ, z)= 0
∫

�D

! · z d� +
∫

�SYM

! · n̂z · n̂ d�= ĉD(!)

∀H∈[H1(�)]2 ∀ϑ∈L2(�) ∀! ∈ [H−1/2(�DS)]2
(29)

where, according to Equation (15)

c′(v,H, z):=c(H, v, z) + c(v,H, z) (30)

This adjoint problem corresponds to the linearized Navier–Stokes equations (Oseen equations)
around v with the following boundary conditions

z= 0 on �IN

z= v̂∞/(q∞d) on �BODY

z · n̂= 0, (T(z, q)n̂) · t̂= 0 on �SYM

T(z, q)n̂= 0 on �OUT

(31)

Finally, by differentiating L(·) with respect to the control variable u, we have

∫
�CTRL

W · r d�= 0 ∀W ∈ [H1/2(�CTRL)]2 (32)

After considering the form (12) for u, the previous equation reads

∫
�CTRL

�g(x) · r d�= 0 ∀�∈R (33)

The sensitivity �U can be written in the following form

�U =
∫

�CTRL

g(x) · r d� (34)

which is identically equal to zero at the optimum. Let us note that the sensitivity �U depends
on the adjoint stress r; by similar arguments to those considered for the computation of the drag
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coefficient and by manipulating Equation (29), Equation (34) equivalently reads

�U = − A′(G,ϑ, z, q, v) ∀ϑ∈L2(�) (35)

where

A′(H,ϑ, z, q, v):=a(H, z) + b(q,H) + b(ϑ, z) + c′(H, v, z) (36)

being

G∈[H1(�)]2 with G|�CTRL = g(x), G|��\�CTRL
= 0 (37)

3. NUMERICAL DISCRETIZATION

To solve the optimal control problem, we consider the Galerkin-FE method for the numerical
solution of the state and adjoint equations (Navier–Stokes and Oseen type) and an iterative approach
for functional minimization.

3.1. The optimization iterative method

We describe, by referring to the abstract framework of Section 2.1, the optimization method
considered for the solution of the optimal control problem.

The optimum of the control problem (1) is the solution of the Euler–Lagrange system (3) (or
(4)), which is composed by the state, adjoint and ‘sensitivity’ equations. The system is, in general,
fully coupled, in the sense that each equation involves all the variables (v, z, u), with the exception
of the state equation which does not depend on the adjoint variable z. The solution of the control
problem can be obtained by solving the complete system (3); however, the computational cost
associated with this method could be very large.

An alternative approach, which we consider in this work, is based on the following iterative
optimization procedure, which involves the steepest-descent method (see [11, 29]):
1. start with an initial control variable u0;
2. solve the state equation/s, from which we obtain v j ;
3. compute the value of the cost functional J (v j , u j );
4. solve the adjoint equation/s, given the control variable and once the state variables are

computed (we obtain z j );
5. extract the sensitivity �u j from the third equation of the Euler–Lagrange system (Equation

(8));
6. compute the norm of the sensitivity ‖�u j‖U;
7. compare the norm of the sensitivity with a stopping criterium tolerance TolIT:

• if ‖�u j‖U�TolIT, perform an iterative step on the control variable:

u j+1 = u j − � j�u j (38)

and return to point 2;
• if ‖�u j‖U<TolIT, stop.

The relaxation parameter � j can be chosen on the basis of the optimal control properties [11, 29].
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Let us notice that for the optimal control problem under investigation, according to Equation
(35), the norm of sensitivity reads

‖�u‖U = |�U | = |A′(G,ϑ, z, q, v)| ∀ϑ ∈ L2(�) (39)

where G is chosen according to Equation (36).

3.2. Numerical solution of state and adjoint equations

Both the state and adjoint equations enforce the Dirichlet boundary conditions in weak form,
by means of Lagrangian multipliers, through the state and adjoint stresses w and r. However,
for the numerical solution, we can re-write these equations in a conventional manner introducing
appropriate functional spaces and lifting terms. In this way, we omit to compute explicitly the state
and adjoint stresses w and r.

The state equations consist of the steady Navier–Stokes equations, while the adjoint ones
correspond to a steady Oseen problem. In fact, the adjoint equations are linear in both the adjoint
variables (velocity and pressure), being the term c′(v,H, z) (30) linear w.r.t. the adjoint velocity
z. Let us note that the adjoint equations depend on the state variables uniquely through the term
c′(v,H, z); for this reason, the FE matrix corresponding to this term needs to be recomputed at
each step of the optimization iterative procedure.

First, we recall briefly a method for the solution of the Stokes equations, which is employed to
solve the adjoint equations and to initialize the state Navier–Stokes equations. Then, we consider
the Newton method, with Uzawa preconditioning for the solution of the Navier–Stokes equations.
Other and more efficient numerical methods for the solution of Stokes and Navier–Stokes equations,
both steady and time dependent, can be used (see, e.g. [19, 26, 30–32]).

Solution of steady Stokes equations: In order to satisfy the inf–sup (LBB) condition [19], we
consider the P2–P1 continuous FE pair for the velocity and the pressure, respectively (for both
state and adjoint ones). By considering a generic Stokes problem (see, e.g. Equation (9) without
the non-linear term) the corresponding discretized problem reads

AV + BTP= F

BV= 0
(40)

where the matrices A and B corresponds to the variational forms a(·, ·) and b(·, ·), respectively
(Equations (13) and (14)), F is the source term vector (including the lifting terms), while V and
P are, respectively, the vectors of the unknown FE coefficients for the velocity and pressure.
The problem is resolved by computing firstly the pressure vector P and then the velocity V
vector:

BA−1BTP= BA−1F (41)

AV=F − BTP (42)

Both systems admit unique solution, being the matrix A symmetric and positive definite and the
rank of B maximum (due to the FE pair considered), that can be obtained by means of the conjugate
gradient (CG) method [33], being the matrix BA−1BT symmetric and positive definite.
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Remark 3.1
In the case of the Oseen problem for the adjoint equation, the matrix A arises from the variational
forms a(·, ·) and c′(·, ·, ·) (Equations (13) and (30)), for which A is no longer symmetric; in
this case for the solution of the linear systems (41) and (42) the GMRES method [33] has been
considered.

Solution of steady Navier–Stokes equations: The Navier–Stokes equations for an incompressible
fluid with constant properties can be seen as a compact perturbation of the Stokes equations, with
the addition of a non-linear term in the velocity variable. The system can be solved by means
of the Newton method, solving at each step of the iterative procedure an Oseen problem, which
arises by linearizing the Navier–Stokes equations. These linearized equations at the generic step
k + 1, obtained from Equation (9), read

−∇ · T(v(k+1), p(k+1)) + c′(v(k), v(k+1)) + c′(v(k+1), v(k)) = c′(v(k), v(k)) in �

∇ · v(k+1) = 0 in �

B.C.s on ��

(43)

where v(k) is the velocity computed at the previous iterative step and c′(·, ·) is defined as

c′(r,q):=�(r · ∇)q (44)

The Newton algorithm reads:

1. solve the Stokes problem, computing the initial pressure and velocity field;
2. by considering the velocity computed at the previous step v(k), solve the Oseen problem,

corresponding to Equation (43), obtaining v(k+1) and p(k+1).
3. compute the appropriate norms of the incremental differences v(k+1) −v(k) and p(k+1) − p(k)

and compare them with a prescribed tolerance;
4. if the stopping criterium is fulfilled, take v(k+1) and p(k+1) as solutions of the Navier–Stokes

equations; otherwise, set v(k) = v(k+1), p(k) = p(k+1) and return to point 2.

A preconditioning matrix can be used for the solution of the linear system (41) corresponding
to the Stokes (or Oseen) equations, which are recursively solved in the Newton method. In
particular, we consider the Uzawa preconditioning matrix D, which corresponds to the bilinear
form d(p, q):= ∫

� pq d�.
No stabilization terms for convection are used in the discrete Navier–Stokes equations, as we

are interested in flows at low Reynolds numbers (inferior to 50) and we suppose to handle with
sufficiently refined meshes. Moreover, as previously mentioned, a divergence-stable FE pair is
considered, so that stabilization terms for the pressure do not need to be used.

Remark 3.2
At each step of the optimization iterative procedure, we solve the Navier–Stokes state equations, for
which an initialization by means of a Stokes problem occurs. In order to save computational costs,
we can take as initial guess the state velocity computed at the previous step of the optimization
procedure, instead of computing it by means of a Stokes problem solver. The validity of this
procedure is confirmed by numerical tests (see Section 4).

Other techniques for the reduction of the computational cost of the optimization procedure can
be considered, such as, e.g. reduced order methods (see [5, 6]).
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4. NUMERICAL RESULTS

We present some numerical results concerning the drag minimization control problem outlined in
Section 2, carried out by means of the FE library FreeFEM + + [34].

In particular, referring to Equations (9) and (11) and Figure 2, we chose � = 1, V∞ = 1 and
d = 0.1 (body length), for which, defining the Reynolds number:

Re:=�V∞d

�
(45)

the dynamic viscosity coefficient � can be deduced. At the initial step of the optimization procedure,
we initialize u= 0, for which, according to Equation (12), U = 0 and Uav = 2

3U = 0, Uav being the
average value of u on �CTRL. We take the relaxation parameter � j = �= 0.5 (Equation (38)) and
we consider a tolerance TolIT = 1/1000|�U 0| for the stopping criterium of the optimization method
outlined in Section 3.1, where the superscript 0 means at the initial step and �U is reported in
Equation (39). Moreover, we provide the computing times (cpu times) required for the solution of
the optimal control problems; the computations have been carried out on an AMD Athlon 1.8GHz
processor, with 256KB of memory cache and 1GB of RAM.

Test 1: Referring to Figure 2, we consider the case for which t = d = 0.1. For the computations
we use the mesh reported in Figure 3 with 2955 triangular elements (and 1565 vertices); in the
sequel, we provide also a comparison of the results for three different meshes.

Firstly, we consider the case for which Re= 10. In Figure 4, we report the velocity field and
pressure, solution of the state Navier–Stokes equations, obtained for Uav = 0; in Figure 5, the
streamlines for the state velocity field are presented. In Figure 6, we show the adjoint velocity
and pressure, computed at the initial step of the optimization iterative procedure (corresponding to
Uav = 0). At the end of the optimization procedure, we obtain the velocity field and the pressure
reported in Figure 7; in Figure 8, the streamlines of the optimal velocity field show the effects of
the optimization. In particular, the initial drag coefficient cD = 3.8332, corresponding to Uav = 0,
is reduced, by means of this procedure, to the optimal one, which is cD = 3.3066, obtained for
Uav = − 0.96676 (this corresponds to an aspiration of the flow across the control boundaries of

0 0.05 0.1 0.15

0

0.05

0.1

0.15

Γ
NS Γ

NS

Γ
CTRL

Γ
CTRL

Ω

d

t

Figure 2. Zoom around the body, geometry and boundary conditions.
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Figure 3. Test 1: mesh with 2955 elements.
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Figure 4. Test 1: zoom of velocity field (left) and pressure (right) for the initial state flow (Re= 10).

the body). In Figure 9, we report the behaviour of the drag coefficient cD and the sensitivity |�U |
(normalized w.r.t. |�U 0|) versus the number of iterations of the optimization procedure, for which
the convergence occurs in 24 iterations. Let us observe that the convergence of cD to the optimal
value is quick; e.g. after j = 11 optimization steps, we have that |�U j |/|�U 0|< 1

50 and the relative
percent errors on cD and Uav (optimal), computed w.r.t. the optimal quantities, are, respectively,
0.03 and 3.8%. In Figure 10, we show the values of cD obtained by solving the Navier–Stokes state
equations for different values of Uav; this confirms that the local minimum value of cD corresponds
to that obtained by means of the optimization procedure, for which Uav = − 0.96676.

In Table I, we report the values of cD (with Uav = 0) for different Reynolds numbers Re, the
corresponding optimal drag coefficients, the optimal control functions Uav, the number of iterations
of the optimization procedure and the corresponding cpu time. In particular, we find that, when Re
increases, the modulus of the optimal Uav decreases, as the number of iterations of the optimization
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Figure 5. Test 1: streamlines for the initial state flow (zoom) (Re= 10).
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Figure 6. Test 1: zoom of adjoint velocity field (left) and adjoint pressure (right)
for the initial adjoint flow (Re= 10).
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Figure 7. Test 1: zoom of velocity field (left) and pressure (right) for the optimal state flow (Re= 10).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:347–366
DOI: 10.1002/fld



362 L. DEDÈ

Figure 8. Test 1: streamlines for the optimal state flow (Re= 10).
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Figure 9. Test 1: drag coefficient (left) and sensitivity (right), normalized with �U0, versus number of
iterations of the optimization procedure (Re= 10).

Figure 10. Test 1: drag coefficient for different values of Uav (average value of control variable) (Re= 10).
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Table I. Test 1: drag coefficients, minimum drag coefficients, average values (optimal)
of control function, number of iterations of the optimization procedure and cpu times
for different Re values; comparison of results for meshes with 2955 (see Figure 3),

4625 and 6467 elements.

Mesh Re cD (u= 0) cD (opt.) Uav (opt.) Numbers of iterations cpu (s)

5 5.8036 4.7390 −1.7671 44 2295
2955 el. 10 3.8332 3.3066 −0.96676 24 1761

20 2.6710 2.3323 −0.57954 12 1316
50 1.7737 1.5185 −0.32516 3 1050

5 5.8045 4.7401 −1.7679 44 4060
4625 el. 10 3.8337 3.3074 −0.96700 24 2700

20 2.6712 2.3328 −0.57950 12 2002
50 1.7731 1.5186 −0.32489 3 1717

5 5.8046 4.7401 −1.7682 44 6405
6467 el. 10 3.8338 3.3074 −0.96715 24 4446

20 2.6712 2.3328 −0.57961 12 3406
50 1.7732 1.5182 −0.32507 4 2935
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Figure 11. Test 2: streamlines for the initial (left) and optimal (right) state flows (Re= 10).

procedure. However, let us observe that, as Re increases, the computational cost associated with the
solution of the Navier–Stokes equations raises: for this reason, the cost of the complete optimization
procedure could be great, even if the number of iterations is limited. Moreover, in Table I, we
provide a comparison of the results for different triangular meshes with 2955 (see Figure 3), 4625
and 6467 elements. We evidence that, for the Re numbers considered, the sensitivity of the results
w.r.t. the mesh is limited; this shows that the mesh with 2955 elements (Figure 3) is adequate for
the resolution of this optimal control problem.

In Section 3.2, we have anticipated that no stabilization terms for convection have been used
for the FE approximation of the Navier–Stokes equations. Numerical tests confirm the validity of
this choice, for the meshes and the Re numbers considered; for example, by using the mesh with
2955 elements and Re= 50, the local Reynolds number ReK :=h/d Re, h being the diameter of
the local mesh elements is about ReK�1 near the body.
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Table II. Test 2: drag coefficients, minimum drag coefficients, average values (optimal)
of control function, number of iterations of the optimization procedure and cpu times

for different Re values.

Re cD (u= 0) cD (opt.) Uav (opt.) Number of iterations cpu (s)

5 3.9966 3.7802 −0.91485 56 3082
10 2.5624 2.5084 −0.37184 37 2466
20 1.7201 1.6991 −0.18668 21 2060
50 1.0759 1.0577 −0.11335 7 1517

Figure 12. Stokes case: drag coefficient versus average value of control variable.

In Remark 3.2, we have discussed a strategy for the reduction of the computational cost of
the optimization procedure, for which we initialize the linearized Navier–Stokes state equations
with the velocity field computed at previous step of the optimization iterative procedure, instead
of using a Stokes solver at each optimization step. Numerical tests, referring to the problem under
investigation, outline that cost savings can be reached of about 37 and 25%, for Re= 5 and 10,
respectively (for the mesh with 2955 elements).

Test 2: We consider the case for which t = d/2= 0.05 (see Figure 2), i.e. the thickness of this
body is the half of that considered for Test 1. For the computations, we use a mesh similar to that
reported in Figure 3 with 2987 triangular elements (and 1573 vertices).

In Figure 11, we show the streamlines of the initial (left) and optimal (right) flows for Re= 10,
which evidence the effect of the aspiration of the flow across the control boundaries. In Table II,
we report the results obtained for this test case, which confirm the considerations made for Test 1;
moreover, we evidence that, for this body, the effects of the boundary layer aspiration on the drag
coefficient are less evident than for the body of Test 1.

The Stokes case: If we define the drag minimization control problem for the Stokes equations,
the drag coefficient does not admit a positive minimum, but tends to −∞; this is due to the linearity
in the velocity of the Stokes equations and the drag coefficient.

In Figure 12, we report, referring to Test 1, the drag coefficient (for a prescribed �) computed
for different values of Uav, for which the linear dependence of cD on Uav is evidenced.
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5. CONCLUSIONS

In this work, we have studied an optimization control problem for the drag reduction of a 2-D
body in relative motion with an incompressible fluid with constant properties. In particular, we
have considered as control function the Dirichlet boundary conditions defined on a part of the
boundary of the body itself. We have used the Lagrangian functional approach for the resolution
of the optimal control problem, together with the Lagrangian multiplier method for the treatment
of the Dirichlet boundary conditions. This has allowed a straightforward determination of the
Euler–Lagrange system, without introducing lifting terms. We have proved the effectiveness of
the procedure on numerical tests by computing the optimal flow for which the drag coefficient is
minimum and comparing the results for different Re numbers and configurations.
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